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RUNOFF SIMULATION USING RADAR RAINFALL DALV 

John C. Peters and Daniel J. Easton2 

ABSTRACT: Rainfall data products generated with the national 
network of WSR-88D radars are an important new data source pro- 
vided by the National Weather Service. Radar-based data include 
rainfall depth on an hourly basis for grid cells that are nominally 4 
km square. The availability of such data enables application of 
improved techniques for rainfall-runoff simulation. A simple quasi- 
distributed approach that applies a linear runoff transform to grid- 
ded rainfall excess has been developed. The approach is an 
adaptation of the Clark conceptual runoff model, which employs 
translation and linear storage. Data development for, and results 
of, an initial application to a 4160 km2 watershed in the Midwest- 
em U.S. are illustrated. 
(KEY TERMS: hydrograph analysis and modeling; simulation; sur- 
face water hydrology; radar.) 

grid cells are superposed on the basin, and rainfall 
and losses are tracked uniquely for each cell. Rainfall 
excess for each cell is lagged to the basin outlet by the 
cell's travel time (i.e., time of travel from the cell to 
the basin outlet). The lagged excesses are routed 
through a linear reservoir, and baseflow is added to 
obtain a total-runoff hydrograph. The computer pro- 
gram that performs these computations is the Modi- 
fied Clark (modClark) Runoff Simulation Program 
(HEC, 1995a). 

INTRODUCTION 

Traditional application of the unit hydrograph 
approach to runoff simulation involves the use of spa- 
tially averaged (lumped) values of basin rainfall and 
infiltration (losses). This approach has been of practi- 
cal value because data available from typically sparse 
rain-gage networks are generally inadequate to justi- 
fy more spatially detailed simulation methods. The 
availability of "new-generation" radar rainfall data 
enhances the attractiveness of distributed simulation 
approaches that take into account spatial variations 
of rainfall and watershed characteristics. 

To facilitate initial use of radar rainfall data, a rel- 
atively simple quasi-distributed approach has been 
developed that applies a linear runoff transform to 
gridded rainfall excess. The approach is an adaptation 
of the Clark conceptual runoff model (Clark, 1943), 
which represents surface runoff with translation and 
linear-storage attenuation. In this adaptation, radar 

RADAR RAINFALL DATA 

A national network of WSR-88D (Weather Surveil- 
lance Radar-88 Doppler) radars is being deployed by 
the National Weather Service (NWS). Processing of 
precipitation data by the NWS is done in stages 
(Shedd and Fulton, 1993). Stage III products incorpo- 
rate information from "ground truth" rain gages and 
satellite and surface temperature observations, and 
they result from merging ("mosaicking") data from 
overlapping radar coverages. For the application illus- 
trated subsequently, Stage III hourly precipitation 
data were obtained via Internet from the NWS 
Arkansas-Red Basin River Forecast Center (ABRFC) 
in Tulsa, Oklahoma. As of mid-1995, the ABRFC was 
the only NWS River Forecast Center from which 
Stage III products were routinely available, although 
testing of Stage III processing was underway at sever- 
al other River Forecast Centers. 

The Stage III rainfall data are provided for cells 
defined by the Hydrologie Rainfall Analysis Project 
(HRAP) grid (Greene and Hudlow, 1982). The HRAP 
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grid is uniform on a polar stereographic map projec- 
tion. Consequently, the dimensions of an HRAP grid 
cell, as projected on the earth's surface, vary with lati- 
tude. Figure 1 illustrates an HRAP grid superposed 
over four subbasins of the 4160 km2 Illinois River 
watershed upstream from Tenkiller Lake. The water- 
shed is located in northeastern Oklahoma and north- 
western Arkansas. The grid cell areas vary in this 
watershed from 16.3 to 16.5 km2. 

MODIFIED CLARK METHOD 

Two basin parameters are required to transform 
rainfall excess to direct runoff with the Modified 
Clark method: time of concentration, Tc; and storage 
coefficient (for a linear reservoir), R. Both have units 
of time. Translation is performed on a grid cell basis 
by using a travel time index. The travel time (or 
translation lag) for a grid cell is calculated as follows: 

Figure 1. HRAP Grid Superposed on Four 
Subbasins of the Illinois River Watershed. 

Radar rainfall data obtained from the ABRFC is in 
the netCDF (Network Common Data Form) format 
(Unidata Program Center, 1991). A utility program 
titled gridUtl (HEC, 1995b) loads the data into a 
direct access file associated with the Hydrologie Engi- 
neering Center's Data Storage System (HEC-DSS). 
The Modified Clark program retrieves the gridded 
rainfall data from an HEC-DSS file. 

(travel time)cell = Tc (^el time index)cM 

(travel time index)max 
(1) 

where Tc is the time of concentration for the basin, 
(travel time index)cM is the travel time index for a 
cell, and (travel time index)max is the maximum travel 
time index of all of the cells associated with the basin. 
The development of a travel time index is described in 
the next section. 

The lagged rainfall excess for each cell is routed 
through a linear reservoir with the following equa- 
tion: 

Oi 
At 

R + 0.5*At laug + 
At 

R + 0.5*At 
Oi-, (2) 

where Ot is direct runoff at time i, R is the storage 
coefficient, Iavg is the average inflow for the interval 
i-1 to i, and At is the time interval. 

CELL PARAMETERS 

Part of the required input for the Modified Clark 
program is a cell-parameter file that contains the 
following information for each cell: cell x-coordinate, 
cell y-coordinate, area (within basin), and travel time 
index. As shown in the previous section, the travel 
time index for a cell is used to calculate a translation 
lag. The travel time from a cell to the basin outlet is 

x = - 
D 

>avg 
(3) 

where x is the time-of-travel to the basin outlet, D is 
the length of the flow path to the basin outlet, and 
Vavg is the average velocity over the flow path. If it is 
assumed that travel velocity is constant for the basin, 
then flow path length can serve as the cell travel time 
index. 

An alternative to the assumption of a constant 
travel velocity is to incorporate a spatially distributed 
velocity field, as proposed by Maidment et al. (1996). 



RunofrSimulation Using Radar Rainfall Data 

The travel velocity through a cell is assumed to be 
proportional to the cell slope and to the accumulated 
area of all cells contributing runoff to the cell. That is, 

vcell Sa * Ab (4) 

where vcen is the travel velocity through a cell, S is 
the cell slope, and A is the accumulated area of con- 
tributing cells. The accumulated area can be regarded 
as a surrogate for depth. A value of 0.5 has been 
found to be reasonable for both the a and b exponents 
(Maidment et al, 1996). The travel time index for a 
cell is then defined as the integral of lcen/uce\\ along 
the flow path to the basin outlet, where lceu is the 
length of flow path through a cell. Incorporation of a 
spatially distributed velocity field in computing travel 
time indices is worthy of further study. However, for 
the purposes of this paper, the assumption of a con- 
stant average velocity over all the basin flow paths is 
adopted for an initial demonstration of the Modified 
Clark method. 

Procedures for using a geographic information sys- 
tem (GIS) to calculate cell areas and travel time 
indices have been developed (HEC, 1995c). The proce- 
dures require processing digital elevation model 
(DEM) data such as are available for the continental 
U.S. (via Internet) from the USGS EROS Data Center 
(USGS, 1990). An eight-direction "pour-point" algo- 
rithm defines the direction of flow from any grid cell 
to be in the direction of steepest descent from the cell 
to one of its eight neighbors. A flow path length is 
computed by summing the lengths of all segments 
along the path from the cell to the basin outlet. Area 
and travel time index are determined for DEM-based 
cells at a 100 m resolution. Radar cells (based on the 
HRAP grid) are then superposed and their areas and 
travel time indices are calculated by summing the 
areas and averaging the travel time indices of the 
encompassed DEM-based cells. The cell areas and 
travel time indices are treated as constants for a 
given basin. Thus GIS is used for a one-time process- 
ing of data and is not required for subsequent applica- 
tion of the Modified Clark program. 

LOSSES, BASEFLOW, AND 
HYDROLOGIC ROUTING 

Loss models available in the Modified Clark pro- 
gram are Initial/Constant, SCS Curve Number, and 
Green and Ampt. The methods are applied as in the 
HEC-1 program (HEC, 1990). The loss model parame- 
ters apply to all cells in the basin, but losses are 
calculated individually for each cell based on the rain- 
fall intensities associated with that cell. Baseflow is 

modeled as in HEC-1. The starting flow, recession 
flow, and recession ratio parameters are used to calcu- 
late baseflow at the outlet of the basin. 

The Modified Clark program can only simulate 
runoff from elemental basins - that is, basins that are 
not subdivided. However, the program has the capa- 
bility to write its simulation results (i.e., discharge 
hydrographs) to the HEC-DSS. For applications with 
multi-subbasin watersheds, the hydrographs can be 
retrieved from HEC-DSS and routing performed with 
programs such as HEC-1, HEClF (Peters and Ely, 
1985), or UNET (HEC, 1993). 

TEST WATERSHED 

Runoff simulations were performed for the Illinois 
River watershed above Tenkiller Lake in northeastern 
Oklahoma and northwestern Arkansas. The 4,163 
km2 watershed was divided into four subbasins 
as shown in Figure 2. The subbasin areas and the 
number of radar cells in each subbasin are listed in 
Table 1. Stream gages are located at the outlets of 
subbasins 85, 86, and 113. Inflow to Tenkiller Lake 
can be computed from measured outflow and lake- 
level data. Figure 2 also shows the location of precipi- 
tation gages, for which hourly rainfall is available. 

/\/ Subbasin Boundaries 
%   Stream and Rain Gages ^ 
O   Rain Gages 
/\/ Streams 

O 

Missouri 

TAHLEQUAH 

10   0    10  20  30 Kilometers 

Figure 2. Illinois River Watershed. 
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TABLE 1. Subbasin Area and Number of Radar Cells. 

Subbasin 
Area 
(W) 

Number of 
Radar Cells 

85 829 84 
86 1645 129 

113 795 78 
127 894 86 

The watershed is in the Ozark Highlands and is 
heavily wooded. Elevations range from 140 meters 
above sea level at the outlet of Tenkiller Lake to 580 
meters. The hills in the region are formed of porous 
limestone and overlain with cherty topsoil. The flood 
plains can be gravelly, and in places the substratum is 
too pervious to hold water. Therefore, high infiltration 
is expected (Soil Conservation Service, 1965 and 
1970). For simplicity, the method of using an initial 
loss followed by a constant loss rate was adopted for 
calculating rainfall excess. 

STORM EVENTS 

Radar rainfall data for storms that occurred on 
November 4-5, 1994, January 13-14, 1995, and May 8, 
1995, were used for the initial application of the Mod- 
ified Clark method. Table 2 shows total average rain- 
fall for each storm over the four subbasins as 
calculated using (a) Stage III radar data and (b) data 
from the precipitation gages shown in Figure 2. Total 
average rainfall from the gage data was calculated 
using an inverse distance-squared weighting proce- 
dure (HEC, 1989). 

The total average precipitation calculated for each 
of the three storm events using gage data differs sig- 
nificantly from that calculated using radar data. Dif- 
ferences might be attributed to various factors, 
including the spatial variability of the rainfall' 
weighting of the gage data, the accuracy of the radar 
rainfall data, and associated processing procedures. 
While these are key issues with regard to rainfall 
measurement, their resolution is beyond the scope of 
this paper, which is intended to demonstrate use of 
the gridded rainfall data. 

A time-area concentration histogram for subbasin 
85 is shown in Figure 3. The histogram is based on 
the area and travel time index for each radar cell, and 
it shows the percent of the subbasin area that 
contributes runoff at the outlet (via translation) for 
increments of travel time (expressed as 10 percent 
increments of the time of concentration). A time- 
volume concentration histogram for the November 

4-5, 1994, storm, which shows the percent of the total 
volume of rainfall that contributes runoff to the outlet 
for increments of travel time, is also shown in Figure 
3. If the rainfall were distributed uniformly, the two 
histograms would be identical; the histograms differ 
because of spatial variations in rainfall. As shown, 
the time-volume histogram does not vary greatly from 
the time-area histogram. This was generally true for 
the three storm events over the Illinois River water- 
shed. Conclusions about the time-space rainfall distri- 
bution cannot be made from these histograms because 
the hourly cell data have been integrated over time. 

TABLE 2. Total Average Rainfall as Calculated 
Using Radar and Gage Rainfall Data. 

Total Total 
Average 
Rainfall 

Average 
Rainfall 

Storm Event Subbasin 
(radar) 
(mm) 

(gage) 
(mm) 

November 4-5, 1994 
November. 4-5, 1994 
November 4-5, 1994 
November 4-5, 1994 

85 
86 
113 
127 

93 
90 
98 
92 

74 
55 
118 
133 

January 13-14, 1995 
January 13-14, 1995 
January 13-14, 1995 
January 13-14, 1995 

85 
86 
113 
127 

91 
94 
81 
66 

51 
44 
55 
75 

May 8, 1995 
May 8, 1995 
May 8, 1995 
May 8,1995 

85 
86 
113 
127 

57 
56 
58 
62 

37 
31 
39 
81 

% of Time of Concentration 

Figure 3. Time-Area and Time-Rainfall Volume Histograms 
for the November 4-5, 1994, Storm on Subbasin 85. 
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MODIFIED CLARK SIMULATION 

Results of the Modified Clark runoff simulations at 
the Watts, Tahlequah, and Eldon gages and Tenkiller 
Lake for the November 4-5, 1994, January 13-14, 
1995, and May 8, 1995, storms are shown in Figures 
4, 5, and 6, respectively. Loss parameters were adjust- 
ed so that the volumes of observed and simulated 
runoff were essentially identical. The Clark (i.e., 
basin time-of-concentration and storage coefficient), 
loss, and baseflow parameters used in the simulations 
are shown in Table 3. Values for time-of-concentration 
and storage coefficient were kept constant for the sim- 
ulations. Flow simulation at the Tahlequah gage sta- 
tion and Tenkiller Lake required stream routing of 
hydrographs generated at upstream locations. This 
was performed using the modified Puls method as 
implemented in HEC-1 (HEC, 1990) with storage-dis- 
charge criteria furnished by the Tulsa District of the 
Corps of Engineers. 

As shown in Figures 4, 5, and 6, the simulated 
hydrographs provide a reasonable fit to the observed 
hydrographs. Simulations were also performed using 
spatially averaged radar-rainfall data. The results 
were similar to those based on grid-distributed rain- 
fall. This is attributed to the uniformity of the rainfall 
distribution as discussed in the previous section. It is 
expected that with an application to a storm with 
marked spatial variability, such as a localized convec- 
tive storm, a substantial difference would occur 
between simulations based on grid-distributed versus 
spatially-averaged rainfall. The difference would be 
due to both the grid-based calculation of losses as well 
as the grid-based translation of rainfall excess. Hypo- 
thetical data have been used to confirm this conclu- 
sion, but data have not been available for the 
watershed above Tenkiller Lake for such comparisons. 
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Figure 4. Modified Clark Rainfall-Runoff Simulations for the November 4-5, 1994, Storm. 
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Figure 5. Modified Clark Rainfall-Runoff Simulations for the January 13-14, 1995, Storm. 

CONCLUDING REMARKS 

The availability of rainfall data from WSR-88D 
radars affords new opportunities for increasing the 
spatial detail with which rainfall-runoff processes are 

, simulated. A simple method for simulating watershed 
runoff by using a linear transform of grid-distributed 
rainfall excess is described herein. Aside from cell 
properties (which can be obtained with GIS proce- 
dures), the data requirements for the Modified Clark 
method are essentially the same as for existing 
lumped-parameter models. The method thus provides 
a relatively straightforward transition to use of radar- 
rainfall data. As more physically based distributed 
models come into use, it may be useful to compare 
their performance, data requirements, and utility 
with a simpler approach such as that described 
herein. 
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Figure 6. Modified Clark Rainfall-Runoff Simulations for the May 8, 1995, Storm. 

TABLE 3. Modified Clark Model Parameters Used in Test Simulations. 

Subbasin 

Clark Parameters Loss Parameters 

Storm 
Event 

Tc 
(hours) 

R 
(hours) 

Initial 
Loss 
(nun) 

Baseflow Parameters 
Constant Initial 
Loss Rate Flow Recession 
(mm/hr) (cu. m/s) Ratio* 

1.3 1.4 1.02 

1.0 2.8 1.02 

0.0 0.0 1.02 

3.6 8.5 1.02 

5.1 8.5 1.02 

0.0 113.0 1.02 

1.8 1.4 1.02 

0.0 2.8 1.02 

0.0 65.1 1.02 

1.5 0.0 1.00 

0.0 0.0 1.00 

0.0 0.0 1.00 

85 

86 

113 

127 

November 4-5, 1994 •    30 

January 13-14, 1995 30 

May 8, 1995 30 

November 4-5, 1994 24 

January 13-14, 1995 24 

May 8, 1995 24 

November 4-5, 1994 16 

January 13-14, 1995 16 

May 8, 1995 16 

November 4-5, 1994 1 

January 13-14, 1995 1 

May 8, 1995 1 

15.5 

15.5 

15.5 

11.6 

11.6 

11.6 

9.7 

9.7 

9.7 

10.0 

10.0 

10.0 

62.3 

57.2 

17.5 

69.9 

27.9 

30.2 

92.7 

56.6 

21.1 

32.0 

30.0 

12.7 

*The ratio is that of the initial flow to the flow one hour later. 
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